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Abstract 

The paper proposed a methodology for obtaining a set of efficient solutions for a model which is multi-level 

multiobjective quadratic with fractional objectives and constraints having trapezoidal fuzzy number (MLMOQFP-TrFN) 

as coefficients. The model consists of r-levels with several objectives involved to be solved under a set of quadratic 

constraints. The proposed approach starts with the solution process of the top level and other levels are solved in 

succession but depending on the solution of the previous levels. The solution process of each level comprises mainly 

three stages. In the beginning, the Rouben Ranking Function is used to convert the rth-level of fuzzy model  into a 

deterministic or crisp one. After that, the crisp form is reconstructed to get a non-fractional model with the help of an 

iterative parametric approach. Further, in the last, non-fractional model which is still having multiple objectivesis 

reconstructed to form a model having only one objective with ɛ -constraint method and is lastly solved by following the 

solution of (r-1)th- level to get a desired set of efficient solution. Such programming models are very useful in day to day 

life such as in economic planning, industrial activities, waste management, neural networking, unmanned aerial and 

underwater vehicle management, agricultural yield improvement, transportation problems with maximizing profits and 

minimizing wastage of material and cost and so on. An algorithm depicting all the steps of solution approach is also 

presented to reflect a clear idea for the approach. In addition, a numerical regarding the presentation of complete approach 

that is studied is given in the end. 

 

Keywords- ɛ-constraint method, Parametric approach, Rouben ranking function, Multi-level multiobjective quadratic 

fractional programming model (MLMOQFP), Trapezoidal fuzzy number (TrFN). 

 

 

 

1. Introduction 
Multiobjective Quadratic Fractional Programming (MOQFP) is amongst the successful decision 

making processes for practically analysing situations and making best conclusions out of it. When 

we formulate such models, some particular values for coefficients are required to be considered. 

However, in most of the situations, these particular values of coefficients are unknown and rather 

a close approximation to these values can be made. However, in the vast majority of cases, 

information which is available is ambiguous or expressed as fuzzy numbers which can be either 
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triangular, trapezoidal, intutionistic or interval. Multi-Level MOQFP is one of the hierarchical 

optimization technique having multiple quadratic objective functions that are fractional in nature 

which are to be dealt at multiple levels with the respective decision makers (DMs) having their own 

goals as objectives and different priorities. In these problems, one is the First level decision maker 

(FLDM) who is the leader and the other one’s are second level (SLDM) , third level (TLDM) 

decision makers and so on who follow the decisions made by FLDM but in a viable range. So, there 

is a connectivity between the decisions of all the DMs. Due to the involvement of multiple 

objectives, these programming problems are not optimized with one solution which satisfies all our 

desired objectives at one time. Hence, there arises the need of pareto optimality which was 

suggested by Pareto (1971) according to which all the objectives are satisfied by a pareto solution 

at the same time. 

 

In last few decades, the field of fractional programming has been explored much and several 

approaches for solution methods have been suggested by numerous researchers. The exploration 

began with the Charnes and Cooper (1962) work on linear fractional issues when he devised a 

method for obtaining a linear problem from a fractional one. Martos and Whinston (1964) & 

Jagannathan (1966) introduced parametric approach for solving linear and fractional problems. 

Dinkelbach (1967) further extended the parametric approach for quadratic fractional problems and 

used Newton’s method for obtaining optimal solutions. Numerous researchers then followed his 

method and devised other methods for attaining optimal results. The concept of Bi-Level 

programming was developed by Candler and Townsley (1982) which was further extended to 

multi-level programming. Later on, it was extended by abundant of techniques and algorithms by 

various researchers like Roy and Bhaumik (2018). Mishra and Ghosh (2006) proposed fuzzy 

technique for bi-level fractional programs. Pal and Moitra (2003) also proposed goal programming 

for bi-level programs involving quadratic functions. Almogy and Levin (1971) dealt some 

fractional problems with parametric approach where the objectivere were considered as addition of 

functions which were fractional. Later on, Falk and Palocsay (1991) found the flaws in their 

technique and solved the sum and product of the linear fractional functions with a refined 

parametric approach. Another method based on gradient method was suggested by Tantawy (2008) 

for handling fractional problems. Parametric approach was further used by Tammer (2005) for 

solving MOQFPP by determination of the parameters in the problem. Heesterman (1983) also 

looked at parametric approaches for solving quadratic problems. In addition, Salahi and Fallahi 

(2016) further used parametric technique for handling problems with quadratic fractional 

objectives. For bi-level fractional problems with coefficienta as intervals, (Borza et al., 2014) used 

a parametric technique. Ojha and Biswal (2014) suggested a method of  -constraint to optimize 

fractional problems. Emam (2011, 2013) also proposed using the  -constraint method to solve 

integer bi-level problems having multiple objectives. Nayak and Ojha (2015, 2019) also later on 

studied parametric technique and  -constraint method for solving linear fractional problems. 

Valipour et al. (2016) considered the distance between two solutions for solving linear fractional 

problems. Ehrgott and Ruzika (2008) and Chircop and Zammit-Mangion (2013) also worked with 

problems having several objectives and proposed using  -constraint method in a different manner. 

Emmerich and Deutz (2018) also solved similar problems using evolutionary methods. Bhaumik 

et al. (2017), Bhaumik et al. (2020), Bhaumik and Roy (2021), Bhaumik et al. (2021a) and Bhaumik 

et al. (2021b) worked with inter valued, neutrosophic and intutionistic numbers and proposed 

solution methods in numerous fields. Also, Marin (1996) provided evolutionary methods for 

elasticity in the field of micropolar bodies. Nikas et al. (2020) later on suggested AUGMECON-R 

to obtain solutions which are exact for MOLPP. Goyal et al. (2020, 2021) also worked with 

quadratic fractional models having multiple objectives by parametric and  -constraint technique 
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for optimizing solutions. When all the work was going with the objectives having real coefficients 

or traingular fuzzy coefficients, (Fortemps and Roubens, 1996) suggested a new technique to 

handle fuzzy coefficients which were trapezoidal in nature. Their solution approach was further 

explored by Rath and Dash (2016, 2017) for solving linear and non-linear problems having 

trapezoidal coefficients with FGP. Rani et al. (2021a, 2021b) also worked with the Rouben Ranking 

function coupled with fuzzy programming to MOQFP with trapezoidal coefficients. 

 

It is quite clear from the literature review that a lot of work is going in the field of QFP but there is 

still a research gap in the field of trapezoidal fuzzy numbers and their defuzzification process using 

Rouben Ranking Function as most of the work is going with the help of FGP using alpha-cut 

method. So, the authors proposed this work in QFP with Rouben Ranking Function for handling 

trapezoidal coefficients but a different approach of parametric vectors in combination to  -

constraint method has been used which is very efficient in finding the pareto optimal set of 

solutions. Numerous quadratic fractional programming problems are handled with parametric 

approach in addition to various other methods. From the literature review, it can be seen that the 

work that has been done till now is mostly in the field of linear fractional problems and that too 

with only one objective function. Also, to the knowledge of authors, quadratic fractional problems 

having trapezoidal fuzzy coefficients has not yet been handled with parametric approach coupled 

with  -constraint method. Thus, authors have tried to couple both of these approaches for 

optimizing MOQFP models with trapezoidal fuzzy coefficients. 

 

In this paper, an approach has been proposed to obtain optimal solutions for a multi-level MOQFP 

model with coefficients as trapezoidal fuzzy numbers in the objectives and constraints. The solution 

technique begins with the use of Rouben Ranking Function for the conversion of the first level of 

the fuzzy model to the crisp one. Then, the crisp model which is a fractional one is modified further 

to a non fractional model with the parametric approach by equating each and every fractional 

objectives equal to a parametric vector and finally, this non fractional model is subjected to an  -

constraint method for obtaining a model with a single objective only from several objectives. For 

this, a highest priority objective function is regarded for optimization and rest of the objectives are 

considered as constraints. All of this is decided by the Decision Maker (DM). After the solutions 

for first level are found, then the same procedure is followed for the other levels by following the 

previous level solutions and the final solution is obtained which is acceptable to all the DMs. 

 

The proposed work is categorised into several sections with basic definitions and their related 

properties being given in section 2. The model proposed is formulated in section 3 and various 

approaches used in solution procedure are given in section 4 and 5. Algorithm for the solution 

procedure is given in section 7. All the proposed work is clearly shown with the help of an example 

and comparison with the FGP has also been given in section 8. A practical application of the model 

and proposed work is shown in section 9. With the help of proposed work, any organisation with 

multiple objectives of different natures can be benefitted as it provides efficient solutions and it is 

the choice of the DMs to choose any one of the solutions out of all pareto solutions which are best 

suitable for the organisation. 

 

2. Preliminaries 

𝑅𝑛𝑖 = space of 𝑛𝑖-dimensional vectors 

𝑥𝑇 = Transponse of 𝑥 

𝛼(𝑡) = vector of parameters , ′𝑡′ represents iteration number. 
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𝑇𝑖
𝑟 = Termination Constants of 𝑟th-level. 

𝑆 = Set of Constraints 

𝑇̃ =  (𝑎, 𝑏, 𝑐, 𝑑 ) ;  𝑎 ≤  𝑏 ≤  𝑐 ≤  𝑑 denotes the Trapezoidal Fuzzy Number. 

‘𝑟’ is used as superscript for representing 𝑟th-level. 

 

Trapezoidal Fuzzy Number (TrFN) 

A number 𝑇̃ =  (𝑎, 𝑏, 𝑐, 𝑑 ) ;  𝑎 ≤  𝑏 ≤  𝑐 ≤  𝑑  having membership functions given as follows: 

𝜇𝑇̃ (𝑇̃(𝑥))     =       

{
 
 

 
 
  0                            𝑑 ≤ 𝑥 ≤ 𝑎 

   
𝑥 − 𝑎

𝑏 − 𝑎
                 𝑎 ≤ 𝑥 ≤ 𝑏

    1                          𝑏 ≤ 𝑥 ≤ 𝑐

   
𝑑 − 𝑥

𝑑 − 𝑐
                 𝑐 ≤ 𝑥 ≤ 𝑑    }

 
 

 
 

 

 

is referred to as the Trapezoidal Fuzzy Number. 

 

Trapezoidal Fuzzy Matrix 

A matrix 𝑀̃  =  [   ]𝑚 × 𝑚 with every entry as a trapezoidal fuzzy number is known as a Trapezoidal 

Fuzzy Matrix. 

 

Properties of TrFN 

Consider, 𝐴̃  =  ( 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 ) and 𝐵̃  =  ( 𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 ) 

(i) 1 1 2 2 3 3 4 4( , , , )A B a b a b a b a b+ = + + + + ,  

(ii) 1 4 2 3 3 2 4 1( , , , )A B a b a b a b a b− = − − − − , 

(iii) −𝐴̃  =  ( −𝑎4 , −𝑎3, −𝑎2 , −𝑎1), 
(iv) for a real number 𝑎, we have, 𝑎̃  =  ( 𝑎 , 𝑎, 𝑎 , 𝑎). 
 

Rouben Ranking Function 

Fortemps and Roubens (1996) proposed this function for  defuzzifying the fuzzy numbers which is 

defined as: 

𝑅(𝑇̃) =     1  /  2   √(inf 𝑇̃𝛿 +  sup𝑇̃𝛿)𝑑𝛿 . 

 

For a trapezoidal number 𝑇̃  =  (𝑇𝑙 −  𝛿 , 𝑇𝑙  , 𝑇𝑢, 𝑇𝑢 +  𝜆), Rouben Ranking Function defuzzifies 

it into the form, 

𝑅(𝑇̃) =  
1

2
(𝑇𝑙 + 𝑇𝑢 +

1

2
(𝜆 − 𝛿)).                                                                                                                                (1) 

 

Efficient Solution 

A point 𝑢 ∈ 𝑆 is said to be an efficient solution if there is no other point 𝑣 ∈ 𝑆 such that   𝐻𝑗(𝑣) ≤

𝐻𝑗(𝑢) for all 𝑗 and 𝐻𝑗(𝑣) < 𝐻𝑗(𝑢) for atleast one 𝑗. 

 

3. Multi-Level Multi-Objective Quadratic Fractional Programming Model Having 

Trapezoidal Fuzzy Numbers (MLMOQFPM-TrFN) 
MLMOQFPM-TrFN is basically a multiple level problem where each 𝑟th- level decision maker 

sets his own objectives and provide decisions by controlling one of the variables. It is formulated 
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for obtaining an efficient solution of the real life problemsin which the objectives are quadratic and 

of clashing nature but are still inter-related to each other. It has been seen in practical and real life 

situations that the parameters required are not easy to obatin and mostly vague information 

regarding those parameters is only available and thus the role of fuzziness comes into picture over 

here. In the model, TrFN are taken as coefficients in the objectives and constraints. MLMOQFPM-

TrFN is expressed as follows: 

 

First Level:  
1

1
1

1 2 3( ) ( ), ( ), ( ),..., ( )I I I I I

q
xx

H x Min H x H x H x H x=  

1x is the decision variable 

and 1

2

( )
( )

( )

I
I i
i I

i

H x
H x

H x
=  

1 1 1

2 2 2

1

2
1

2

i i i

i i i

T I I I

T I I I

x D x C x d

x D x C x d

+ +
=

+ +
1; 1 i q  . 

 

Second Level:  
2

2
2

1 2 3( ) ( ), ( ), ( ),..., ( )II II II II II

q
xx

H x Min H x H x H x H x=  

2x is the decision variable 

and 1

2

( )
( )

( )

II
II i
i II

i

H x
H x

H x
=

1 1 1

2 2 2

1

2
1

2

i i i

i i i

T II II II

T II II II

x D x C x d

x D x C x d

+ +
=

+ +
2; 1 i q  . 

 

r th-Level:  1 2 3( ) ( ), ( ), ( ),..., ( )
r

r
r

r r r r r

q
xx

H x Min H x H x H x H x=  

rx is the decision variable 

and 1

2

( )
( )

( )

r
r i
i r

i

H x
H x

H x
=  

1 1 1

2 2 2

1

2
1

2

i i i

i i i

T r r r

T r r r

x D x C x d

x D x C x d

+ +
=

+ +

 ; 1 ri q   

such that 
1

| 0, 0 ; 1
2

n T

k k kx S x R x A x B x c x k m

   
  

 =  + +      
  =  

 

where, 

 

1 2 1 2 1 2, , , ,..., , [ ]I I II II r r

i i i i i i n nD D D D D D = ; 1 2 1 2 1 2 1, , , ,..., , [ ]I I II II r r

i i i i i i nC C C C C C = ; [ ]k m nA = ;

1[ ]k mB = are all Trapezoidal Fuzzy Matrices and 
1 2 1 2 1 2
, , , ,..., , ,

i i i i i i

I I II II r r

kd d d d d d c are TrFN. The 

DMs at all the levels can alter their objectives by adjusting the variables 
1 2, ,..., rx x x  respectively. 
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4. Parametric Approach for Fractional Programming 
This approach is designed to remove the fractional nature of the objectives. Here, a parametric 

vector 𝛼𝑗 is equated  to every objective 𝐻𝑗(𝑥) and thus a non-fractional parametric Model is 

reconstructed which is shown as follows: 

1 2( ) { ( ), ( ),..., ( )}qMinH x Min H x H x H x= . 

Take each 
jj

xH =)( , i.e. j

j

j

xH

xH
=

)(

)(

2

1
 

Consider, )()()(
21

xHxHxP
jjjj

−=  

 

∴ The above model gets changed to the following model which is non-fractional given as: 

})({)( xPMinxHMin
j

jSx
=


 

where, ( )jP x  are non-fractional parametric functions. 

 

5. 𝛆 - Constraint Method 
It is one of the methods for the conversion of the models with multiple objectives into the one with 

only a single objective. It makes it easy to deal with one objective function at a time. This is done 

by optimizing any one of the objectives to its best level possible and transforming other objectives 

as constraints. The ε -constraint method is expressed as follows: 

rmxPMin
m

1,)(  

 

subjected to ( )j jP x  ; for all mjrj  ,1  and   𝑥  ∈ 𝑆 

 

where, ],[ u

j

l

jj
   and  

l

j
  and 

u

j
  are the lower and upper values of ( )jP x . Finally, this 

model is solved by putting different values of 
j

 . 

 

6. Methodology 
MLMOQFP is a nested problem where we have multiple objectives which are quadratic and 

conflicting in nature. Here, few objectives are required to be maximized and few to be minimized. 

Our objective is to optimize these objectives simultaneously subjected to some constraints and 

obtain their efficient solutions which are acceptable to all the DMs at all the levels. There are events 

when we are unaware of exact information regarding objectives and constraints. So, the concept of 

fuzzy coefficients is considered to handle that uncertainty. In the present work, trapezoidal fuzzy 

coefficients have been considered in the model. 

 

Model M1: MLMOQFP-TrFN is as follows: 

First Level:  
1

1 1

1 2 3( ) ( ), ( ), ( ),..., ( )I I I I I

q
x x

Min H x Min H x H x H x H x=  

where, 
1x  is the decision variable. 

Second Level:  
2

2 2

1 2 3( ) ( ), ( ), ( ),..., ( )II II II II II

q
x x

Min H x Min H x H x H x H x=  
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where, 
2x is the decision variable. 

 

r th-Level:  1 2 3( ) ( ), ( ), ( ),..., ( )
r

r
r

r r r r r

q
xx

H x Min H x H x H x H x=  

where, 
rx  is the decision variable. 

 

subject to 
1

| 0, 0 ; 1
2

n T

k k kx S x R x A x B x c x k m

   
  

 =  + +      
  =  

. 

 

The above model has TrFN as coefficients in the objectives and constraints. The solution process 

begins with the conversion of the fuzzy model to a crisp one using the Rouben Ranking function 

defined by Fortemps and Roubens (1996). 

 

Model M2: The model obtained from above consists of real coefficients and is given as: 

First Level:  
1

1 1

1 2 3( ) ( ), ( ), ( ), ..., ( )I I I I I

q
x x

Min H x Min H x H x H x H x= . 

 

Second Level:  
2

2 2

1 2 3( ) ( ), ( ), ( ),..., ( )II II II II II

q
x x

Min H x Min H x H x H x H x= . 

 

r th-Level:  1 2 3( ) ( ), ( ), ( ),..., ( )
r

r
r

r r r r r

q
xx

H x Min H x H x H x H x=   

subject to Sx  , This model is now solved using the technique as proposed by Goyal et al. (2020, 

2021). 

 

Let us assume that each ( )

1( ) ,1I I t

i iH x i q=   ; 

( )

2( ) ,1II II t

i iH x i q=   ; 

( )( ) ,1r r t

i i rH x i q=    `𝑡′ being the iteration no. 

 

Consider 
1

( ) ( ) ( ) ( )

1 2( , ,..., )I t I t I t I t

q   =  as the parametric vector for ( )IH x  and 

2

( ) ( ) ( ) ( )

1 2( , ,..., )II t II t II t II t

q   =  as the parametric vector for ( )IIH x  and continuing in the same 

manner, 
2

( ) ( ) ( ) ( )

1 2( , ,..., )r t r t r t r t

q   = as the parametric vector for r th-level objective ( )rH x . 

Consider ( ) ( )

1 2 1( ) ( ) ( ) ,1I I t I I t I

i i i iP H x H x i q = −   , 

( ) ( )

1 2 2( ) ( ) ( ) ,1II II t II II t II

i i i iP H x H x i q = −   , 

( ) ( )

1 2( ) ( ) ( ) ,1r r t r r t r

i i i i rP H x H x i q = −   . 

 

Thus, the model ‘M2’ gets changed into the model ‘M3’ which is given as below: 
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Model M3: First Level: 
1

1

( )( ) ( ) ( )I I I I t

i
x ix

Min H x Min H x Min P = = , 

Second Level: 
2 2

( )( ) ( ) ( )II II II II t

i
x x i

Min H x Min H x Min P = = , 

 

r th-Level: 
( )( ) ( ) ( )

r r

r r r r t

i
x x i

Min H x Min H x Min P = = , 

subject to Sx  , The above model consists of multiple objectives which are not so easy to tackle. 

Thus, an ε-constraint method is further followed to optimize single objective by converting 

remaining objectives into constraints. This selection is made by keeping in mind the priorities of 

the objectives. Therefore, the model ‘M4’ so obtained is given as: 

 

Model M4: First Level: 
1 1 11

( ) ( )

1 2( ) ( ) ( )
l

I I t I I t I

l l lMin P H x H x = −  

subject to Sx  and 
( )

1 1( ) ; 1 ,
i

I I t I

iP i q i l      

where, 
( ) ( )[ , ]I I l I u

i i i    and 
1

I I

l iT T . 

 

Second Level: 
2 2 22

2

( ) ( )

1 2( ) ( ) ( )
l

II II t II II t II

l l l
x

Min P H x H x = −  

subject to Sx  and 
( )

2 2( ) ; 1 ,
i

II II t II

iP i q i l      

where, 
( ) ( )[ , ]II II l II u

i i i    and 
2

II II

l iT T . 

 

r th-Level: 
( ) ( )

1 2( ) ( ) ( )
l r r rr

r r t r r t r

l l lMin P H x H x = −  

subject to Sx  and 
( )( ) ; 1 ,

i

r r t r

i r rP i q i l     , 

where, 
( ) ( )[ , ]r r l r u

i i i    and 
r

r r

l iT T . 

 
r

iT  are the tolerances or termination constants for ( )r

iH x  which are acceptable to the DMs. All 

tolerances are decided by the DMs depending upon the priorities corresponding to the objectives 

and in general are considered very close to zero. Now, the First level is solved and its efficient 

solution is obatined which has to be further followed by the next level DM and the process keeps 

going until all the levels are solved. 

 

First Level: Suppose, 
I

iX  to be the individual solutions for ( )I

iH x  subjected to Sx  . Table 1 

is then formed showing the values of 1( ) ,1I I

i iH X i q   at each individual solution 
I

iX  of 

( )I

iH x . 

 

These are the values of the objectives at the initially obtained set of solutions to the objective 

functions. These are obtained to find the range of the objective functions in which they lie to. 
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Table 1. Pay-off table for obtaining values of objective functions. 
 

I

iX  1 ( )I I

iH X  2 ( )I I

iH X  3 ( )I I

iH X  ... 
1
( )I I

q iH X
 

Individual Solution Objective 1 Objective 2 Objective 3 … Objective 
1q  

1

IX  1 1( )I IH X  2 1( )I IH X  3 1( )I IH X  ... 
1 1( )I I

qH X
 

2

IX  1 2( )I IH X  2 2( )I IH X  3 2( )I IH X  ... 
1 2( )I I

qH X
 

. 

. 

. 

. 

. 

. 

 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

1

I

qX  
11 ( )I I

qH X
 12 ( )I I

qH X
 13 ( )I I

qH X
 

... 
1 1
( )I I

q qH X
 

 

Next, we define ( )I l

i  and ( )I u

i  as: 
( )I l

i = 1min{ ( ); 1 }I I

i iP X i q  , 
( )I u

i = 

1max{ ( ); 1 }
i

I I

iP X i q  . 

 

After this, initial optimal solution 𝑋I(0) for model M4 is determined by: 
1

(0)

1

q
I I I

i i

i

X w X
=

=  where 

weightage for individual solutions sums up to unity. 

 

Consider 
( )I t  for t =1 as: 

1

( ) ( ) ( ) ( )

1 2( , ,..., )I t I t I t I t

q   = = ( )
1

(0) (0) (0)

1 2( ), ( ),..., ( )I I I I I I

qH X H X H X . 

 

After substituting this value of 𝛼I(1) in each ( )( )I t

iP  , we proceed with our proposed approach and 

check for the termination criteria given as: 
( )

1( ) ; 1
i

I I t I

iP T i q     and obtain efficient 

solutions for first level objectives. 

 

Consider 1 2( , ,..., )I I I I

rx x x x= , 1 1 1[( ) , ( ) )]I I I

l ux x x=  be the efficient solution where 1( )I

lx  is the 

least value of 1

Ix and 1( )I

ux  is the greatest value of 1

Ix . 

 

Second Level: The decision of the FLDM (in the form of solution) is to be followed by the SLDM 

i.e. the solution 1

Ix is required to be considered while solving the second level. Thus, the second 

level of the model ‘M4’ is eqiuvalent to: 

2 2 22
2

( ) ( )

1 2( ) ( ) ( )
l

II II t II II t II

l l l
x

Min P H x H x = −  

subject to 
( )

2 2( ) ; 1 ,
i

II II t II

iP i q i l      

1 1( )I

ux x , 1 1( )I

lx x , x S . 

 

Now, we solve this problem as we did the first level of the model and get the final set of solutions 
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1 2( , ,..., )II II II

rx x x  where 2 1 1[( ) , ( ) )]II I I

l ux x x  after checking for the termination condition for 

second level i.e. 
( )

2( ) ; 1
i

II II t II

iP T i q    . Finally, we test for the final condition to check 

whether 1 2( , ,..., )II II II

rx x x  is the solution acceptable to FLDM too and the condition is given as 

follows: 

1 2 1 2

1

1 2

( , ,..., ) ( , ,..., )
1

( , ,..., )

I I I I I II II II

i r i r I

iI II II II

i r

H x x x H x x x
T i q

H x x x

−
   . 

 

If this condition is satisfied, then 1 2( , ,..., )II II II

rx x x  is the efficient solution acceptable to both level 

DMs. Otherwise, we look for another values of termination constants and start again. Then, this 

solution 1 2( , ,..., )II II II

rx x x is followed by the TLDM to obtain another solution and continuing in this 

manner, we proceed to the final r th-Level to obtain the best solution acceptable to all level DMs. 

 

r th-Level: 
( ) ( )

1 2( ) ( ) ( )
l r r rr

r r t r r t r

l l lMin P H x H x = −  

subject to 
( )( ) ; 1 ,

i

r r t r

i r rP i q i l      

1 1 1( ) ( )I I

l ux x x  , 2 2 2( ) ( )II II

l ux x x  , 
1 1

1 1 1( ) ( )r r

r l r r ux x x− −

− − −  . 

 

x S , Solving this level in the same way, we obtain 1 2( , ,..., )r r r

rx x x  as the efficient solutions after 

they satisfy the termination conditions given by: 
( )( ) ; 1

i

r r t r

i rP T i q    . Finally, we test for 

the final termination condition to check whether 1 2( , ,..., )r r r

rx x x is acceptable to all previous level 

DMs given as: 

1 2 1 2

1 2

1 2

( , ,..., ) ( , ,..., )
1 ,1 ,...,1 ;1 1

( , ,..., )

j j j j j r r r

i r i r j

i rj r r r

i r

H x x x H x x x
T i q i q i q j r

H x x x

−
         − . 

 

Then, 1 2( , ,..., )r r r

rx x x  is the final set of solutions to the MLMOQFP after all conditions are satisfied. 

 

Assumptions 

(i) Equal weightages are given to each individual solution of objective functions while 

calculating the initial solutions. 

(ii) DMs are the deciding holders for the Termination constants which are taken up nearer to 

zero for every objective. 

(iii) Initial optimal solution suitable to model is determined by: 𝑋𝑟(0) = ∑
𝑞𝑟
𝑖=1 𝑤𝑖𝑋𝑖  ;  𝑤𝑖  >

0 and ∑
𝑞𝑟
𝑖=1 𝑤𝑖   =  1. 

 

7. Algorithm for Solution Procedure 

Step 1. Apply Rouben Ranking Function as 𝑅(𝑇̃) =  
1

2
(𝑇𝑙 + 𝑇𝑢 +

1

2
(𝜆 − 𝛿)) for every TrFN 

𝑇̃  =  (𝑇𝑙 −  𝛿 , 𝑇𝑙  , 𝑇𝑢, 𝑇𝑢 +  𝜆), to get the crisp model ‘M2’ from fuzzy model ‘M1’. 

Step 2. Start with the solution process of first level of model ‘M2’ and obtain 𝑋𝐼(0) = ∑
𝑞1
𝑖=1 𝑤𝑖

𝐼𝑋𝑖
𝐼 . 
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Step 3. Begin with 𝑡 =  1 in first level of model ‘M2’. 

Step 4. Find 𝛼𝐼(1) = (𝐻1
𝐼(𝑋𝐼(0)),𝐻2

𝐼(𝑋𝐼(0)), . . . , 𝐻𝑞1
𝐼 (𝑋𝐼(0))). 

Step 5. Substitute 𝛼𝐼(1) in 𝑃 𝑖
𝐼(𝛼𝐼(𝑡)) and obtain model ‘M3’. 

Step 6. Select objective 𝑃𝑙1
𝐼 (𝛼𝐼(1)) to be optimized having least value of the 𝑇𝑙1

𝐼  to get an equivalent 

model ‘M4’ from model ‘M3’. 

Step 7. Select 𝜀𝑖
𝐼  ∈  [ 𝜀𝑖

𝐼(𝑙)
 , 𝜀𝑖

𝐼(𝑢)
 ]  ;   1 ≤ 𝑖 ≤ 𝑞1 , 𝑖 ≠  𝑙1 as follows: 

i) When [ − 𝑇𝑖
𝐼 , 𝑇𝑖

𝐼 ]   ∩  [ 𝜀𝑖
𝐼(𝑙)
 , 𝜀𝑖

𝐼(𝑢)
 ]   =  𝜑 , select 𝜀𝑖

𝐼  ∈  [ 𝜀𝑖
𝐼(𝑙)
 , 𝜀𝑖

𝐼(𝑢)
 ] . 

ii) Otherwise, choose 𝜀𝑖
𝐼  ∈  [ −𝑇𝑖

𝐼 , 𝑇𝑖
𝐼 ]. 

Step 8. Find a set of solutions 1 2( , ,..., )I I I I

rx x x x=  for model ‘M4’ by putting different values of 

𝜀𝑖
𝐼. 

Step 9. Check for termination conditions: 
( )

1( ) ; 1
i

I I t I

iP T i q    . If conditions get satisfied, 

stop the process. Otherwise, proceed for step 10. 

Step 10. Find min ∑𝑖 (|𝑃 𝑖
𝐼(𝛼𝐼(1))| − 𝑇𝑖

𝐼) for that 𝑖 where conditions are not satisfied. 

Step 11. Obtain 𝑋𝐼(1) as the solution where ∑𝑖 (|𝑃 𝑖
𝐼(𝛼𝐼(1))| − 𝑇𝑖

𝐼) has got the least value. 

Step 12. Proceed with steps 4 to 9 to obtain 1 2( , ,..., )I I I I

rx x x x=  as a representative set of efficient 

solutions to the first level of the model satisfying the termination conditions. If not satisfied, 

tolerances can be reset by the DM. Then, start the solution process of the second level of model 

‘M2’. 

Step 13. Consider 1 1 1( ) ( )I I

l ux x x   as one of the constraints in the second level of M2. 

Step 14. Repeat steps 3 to 12 for the second level and find a set of efficient solutions 

(𝑥1
𝐼𝐼 , 𝑥2

𝐼𝐼 , . . . , 𝑥𝑟
𝐼𝐼). 

Step 15. Check for
1 2 1 2

1

1 2

( , ,..., ) ( , ,..., )
; 1

( , ,..., )

I I I I I II II II

i r i r I

iI II II II

i r

H x x x H x x x
T i q

H x x x

−
   . If it is satisfied, go 

to step 16. If not, then reset tolerances and proceed again. 

Step 16. Continue the above process for all the 𝑟-levels and obtain 1 2( , ,..., )r r r

rx x x  as the set of 

efficient solutions for the 𝑟th-level. 

Step 17. Test for the termination conditions: 

1 2 1 2

1 2

1 2

( , ,..., ) ( , ,..., )
; 1 ,1 ,...,1 ;1 1

( , ,..., )

j j j j j r r r

i r i r j

i rj r r r

i r

H x x x H x x x
T i q i q i q j r

H x x x

−
         − . 

Step 18. If satisfied, proceed to step 19, otherwise ask the DM to look for termination constants. 

Step 19. End the process. 

 

8. Numerical Example 
Consider the MLMOQFPM-TrFN as: 

First Level: 32

1 2

1

2 22 2

1 21 3

2 2

1 1

0.9 0.93 0.80.95 0.8 0.89
( ) ( ) , ( )

1.1 2.1 0.91 1.9

I I I

x

x x xx x x
MinH x H x H x

x x

 + −+ − 
= = = 

+ +  

. 

Second Level: 3 2

1 2

2

2 2 2 2

2 1 1 3

2 2 2 2

2 3 1 2

0.92 0.89 0.91 1.04 0.99 1.1
( ) ( ) , ( )

1.01 2.9 0.95 3.02 1.02 0.87

II II II

x

x x x x x x
MinH x H x H x

x x x x

 + − + − 
= = = 

+ + + +  

. 



Goyal et al.: A Solution Approach for Multi-Level Multi-Objective Quadratic…  
 

 

142 | Vol. 7, No. 1, 2022 

Third Level: 3 2

1 2

3

2 2 2 2

1 2 1 3

2 2 2 2

1 3 1 2

0.9 1 1.1 0.96 1.03 0.98
( ) ( ) , ( )

0.95 3 1.3 0.93 3.02 1.05

III III III

x

x x x x x x
MinH x H x H x

x x x x

 + − + + 
= = = 

+ + + +  

 

 

such that 

2 2 2

1 2 3

2

1 2 3

2

2 1 3

1 2 3

1.2 0.98 0.84 1.08

1.3 1.05 0.88 4.1

0.79 0.96 1.03 8.8

, , 0

x x x

x x x
S

x x x

x x x

 + + 
 

+ +  
= 

+ +  
  

, 

 

where, 

0.95 (0.94,0.95, 0.98, 0.99) ; 4.1 (4.04, 4.09, 4.1,4.12)= = , 

0.8 (0.81, 0.84, 0.86, 0.89); 0.79 (0.79,0.84,0.89,0.94)= = ,

0.89 (0.84,0.89,0.91,0.95); 0.96 (0.93,0.96,0.98,0.99)= = , 

1.1 (1.03,1.08,1.1,1.3); 1.03 (1.03,1.04,1.06,1.08)= = , 

2.1 (1.9,1.98,2,2.1); 8.8 (8.8,9.1,9.13,9.16)= = , 

0.9 (0.9,0.92,0.95,0.98); 0.92 (0.91,0.92,0.94,0.99)= = , 

0.93 (0.93,0.96,0.98,1.1); 0.89 (0.89,0.92,0.94,0.96)= = , 

0.8 (0.82,0.85,0.9,0.94); 0.91 (0.90,0.905,0.91,0.93)= = , 

0.91 (0.91,0.94,0.97,1); 1.01 (1.01,1.04,1.06,1.08)= = , 

1.9 (1.86,1.9,1.93,1.97); 2.9 (2.9,2.93,2.95,2.97)= = , 

1.2 (1.04,1.09,1.2,1.22); 0.95 (0.93,0.95,0.96,0.98)= = , 

0.98 (0.96,0.99,1.1,1.4); 1.04 (1.02,1.04,1.05,1.07)= = , 

0.84 (0.84,0.89,0.93,0.97); 0.99 (0.96,0.98,0.99,1.01)= = , 

10.8 (10.8,10.9,11,11.1); 1.1 (1.07,1.09,1.1,1.12)= = , 

1.3 (1.06,1.1,1.2,1.3) ; 3.02 (3.01,3.02,3.04,3.06)= = , 

1.05 (1.05,1.06,1.08,1.1); 1.02 (1.02,1.04,1.07,1.08)= = , 

0.88 (0.88,0.9,0.93,0.94); 0.87 (0.88,0.9,0.93,0.95)= = . 

 

We first use Rouben Ranking Function for every TrFN as given by Fortemps and Roubens (1996) 

to get a crisp model from the above model. It is shown as below: 

(0.95) 0.965, (0.98) 1.1125, (0.92) 0.94, (1) 1, (0.8) 0.85,

(0.84) 0.9075, (0.89) 0.9275 , (3) 3 , (0.89) 0.8975,

(10.8) 10.95, (0.91) 0.91125, (1.1) 1.1275, (1.3) 1.165,

(1.01) 1.0475,

R R R R R

R R R R

R R R R

R R

= = = = =

= = = =

= = = =

= (2.1) 1.995, (1.05) 1.0725, (2.9) 2.9375R R= = =
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(0.9) 0.9375, (0.88) 0.9125, (0.95) 0.955, (0.93) 0.9925,

(4.1) 4.0875, (1.04) 1.045, (0.8) 0.8775, (0.79) 0.865,

(0.99) 0.985, (0.91) 0.955, (0.96) 0.965, (1.1) 1.095

(1.9) 1.915, (1.0

R R R R

R R R R

R R R R

R R

= = = =

= = = =

= = = =

= 3) 1.0525, (3.02) 3.0325, (1.2) 1.1375,

(8.8) 9.0475, (1.02) 1.0525, (0.88) 0.915.

R R

R R R

= = =

= = =

 

 

Thus, the fuzzy model ‘M1’ gets converted to the crisp model ‘M2’ which is given as below M2: 

First Level: 

3

1 2

1

2 22 2
1 21 2 3

2 2

1 1

0.9375 0.9925 0.87750.965 0.85 0.8975
( ) ( ) , ( )

1.1275 1.995 0.955 1.915

I I I

x

x x xx x x
Min H x H x H x

x x

 + −+ − 
= = = 

+ +  

. 

 

Second Level: 

2

1 2

2

2 22 2
1 32 3 1

2 2 2 2

2 3 1 2

1.045 0.985 1.0950.94 0.9275 0.91125
( ) ( ) , ( )

1.0475 2.9375 0.955 3.0325 1.0525 0.915

II II II

x

x x xx x x
Min H x H x H x

x x x x

 + −+ − 
= = = 

+ + + +  

. 

 

Third Level:

2

1 2

3

2 22 2
1 31 3 2

2 2 2 2

1 3 1 2

0.965 1.0525 1.11250.9375 1 1.1275
( ) ( ) , ( )

0.965 3 1.0525 0.9925 3.0325 1.0725

III III II

x

x x xx x x
Min H x H x H x

x x x x

 + −+ − 
= = = 

+ + + +  

. 

 

such that 
2 2 2

1 2 3

2

1 2 3

2

2 1 3

1 2 3

1.1375 1.1125 0.9075 10.95,

1.165 1.0725 0.9125 4.0875,

0.865 0.965 1.0525 9.0475,

, , 0.

x x x

x x x

x x x

x x x

+ + 

+ + 

+ + 



 

 

We initiate by solving the first level of M2. 

 

First Level: First, we find individual solutions of 
1
( )IH x  and 

2
( )IH x  using Lingo 15 software 

given as: 

1 2(0.000083,0.0000878,3.473631) ; (0.0000523,3.137307,0.00005156)I IX X= = . 

 

 
Table 2. Pay-off table at initial solutions of first level. 

 

I

jX  
1
( )I I

jH X  
2
( )I I

jH X  

1

IX  -1.5627 6.253545 

2

IX  4.193606 -1.43759 
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Table 2 shows the values of the objectives at initial individual solutions. Hence, initial solution for 

the Model ‘M2’ is given by:
(0)

1 1 2 2

I I IX w X w X= +  

(0) (0.00006765,1.5686974,1.73684128)IX = . 

 

Next, initial parametric vector is found as: 

1 2

(1) (0) (0)( ( )), ( )I I I I IH X H X = (0.267105,0.844627)= . 

 

The model ‘M2’ is further converted to Model ‘M3’(non-fractional model) with the help of this 

parametric vector which is given as below: 

M3:  
1 2

(1) (1)

1 2( ) ( ), ( )I I I I IMinH x Min P P = , 

 

such that Sx , where, 
1 2

(1) 2 2

1 3( ) 0.6638391125 0.85 0.8975 0.532874475I IP x x x = + − −  

and 
2

(1) 2 2

1 3( ) 0.130881215 0.9925 0.8775 1.617460705I IP x x x = − − − . 

 

Initial optimal solutions to model ‘M3’ are given by: 

1 2(0.00007759655,0.000068629,3.473631), (0.0001935,3.137307,0.00009559)I IX X= = . 

 

Table 3. Pay-off table of ( )
j

I I

jP X . 

 

I

jX  
1

( )I I

jP X  
2

( )I I

jP X  

1

IX  -3.6 10.4 

2

IX  7.8 -4.37 

 

 

Table 3 shows the values of ( )
j

I I

jP X . Next, DM sets the termination constants for the functions 

as 1 20.2, 0.3I IT T= = . 

 

As 1 2

I IT T , therefore, Model ‘M4’ (a single objective model) is obtained from Model ‘M3’ by 

using  -constraint method shown as below M4: 

Min 
1 2

(1) 2 2

1 3( ) 0.6638391125 0.85 0.8975 0.532874475I IP x x x = + − − , 

 

such that 
2 2

(1) 2 2

1 3( ) 0.130881215 0.9925 0.8775 1.617460705I I IP x x x = − − − 

 

 

Sx , 
( )

2

I l =  4.37045− and 
( )

2

I u = 10.3581. 

 

Thus, we select 
2

[ 0.3, 0.3]I  −  and by taking different values of 
2

I , we get a set of efficient 

solutions as shown in Table 4. 
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Table 4. Efficient solutions for the first level. 
 

2

I
 

1
x  

2
x  

3
x  

1

IP  2

IP  1 ( )IH x  2 ( )IH x  

-0.3 0.0000328 0.2119 1.101 0.11 -0.3 -0.47624 0.531312 

-0.24 0.0000329 0.2072 1.126 0.09 -0.24 -0.48845 0.562643 

-0.18 0.0000323 0.2027 1.151 0.06 -0.18 -0.50039 0.593975 

-0.12 0.0000319 0.1985 1.175 0.04 -0.12 -0.51208 0.625306 

-0.06 0.0000312 0.1946 1.199 0.02 -0.06 -0.52353 0.656637 

0.06 0.0000672 0.1807 1.246 -0.02 0.06 -0.54577 0.719301 

0.12 0.0000616 0.1839 1.269 -0.04 0.12 -0.55658 0.750633 

0.18 0.0000662 0.1807 1.291 -0.06 0.18 -0.5672 0.781964 

0.24 0.0000601 0.1776 1.313 -0.08 0.4 -0.57764 0.813295 

0.3 0.0000639 0.1747 1.335 -0.11 0.3 -0.5879 0.844627 

 

It is clear that termination conditions are satisfied for 
(1)

1 ( )I IP   and 
(1)

2 ( )I IP  . 

 

So, 1 2( , );I I Ix x x=  10.0000312 0.0000672Ix  are the efficient solutions which are required to 

be followed for second and third level DMs. 

 

Second Level: The Model ‘M2’ of second Level is therefore equivalent with: 

2

1 2

2

2 22 2
1 32 3 1

2 2 2 2

2 3 1 2

1.045 0.985 1.0950.94 0.9275 0.91125
( ) ( ) , ( )

1.0475 2.9375 0.955 3.0325 1.0525 0.915

II II II

x

x x xx x x
Min H x H x H x

x x x x

 + −+ − 
= = = 

+ + + +  

 

 

Subject to 
2 2 2

1 2 3

2

1 2 3

2

2 1 3

1

1 2 3

1.1375 1.1125 0.9075 10.95,

1.165 1.0725 0.9125 4.0875,

0.865 0.965 1.0525 9.0475,

0.0000312 0.0000672,

, , 0.

x x x

x x x

x x x

x

x x x

+ + 

+ + 

+ + 

 



 

 

We now solve this reconstructed second level of our model with an additional constraint by the 

same method as followed in first level and set of efficient solutions is obtained given as in Table 5. 

 
Table 5. Efficient solutions for the second level. 

 

2

II  1
x  

2
x  

3
x  

1

IIP  2

IIP  1 ( )IIH x  2 ( )IIH x  

-0.3 0.0000672 0.0000452 2.01 0.09 -0.3 0.292 -2.41 

-0.24 0.0000672 0.0000467 1.95 0.07 -0.24 0.291 -2.34 

-0.18 0.0000672 0.0000483 1.90 0.05 -0.18 0.289 -2.28 

-0.12 0.0000672 0.0000499 1.85 0.04 -0.12 0.288 -2.21 

-0.06 0.0000672 0.0000515 1.79 0.02 -0.06 0.287 -2.14 

0.06 0.0000672 0.0000464 1.68 -0.016 0.06 0.283 -2.01 

0.12 0.0000672 0.0000491 1.63 -0.03 0.12 0.281 -1.95 

0.18 0.0000672 0.0000505 1.57 -0.05 0.18 0.279 -1.88 

0.24 0.0000672 0.0000521 1.52 -0.06 0.24 0.277 -1.82 

0.3 0.0000672 0.0000477 1.46 -0.08 0.3 0.274 -1.75 



Goyal et al.: A Solution Approach for Multi-Level Multi-Objective Quadratic…  
 

 

146 | Vol. 7, No. 1, 2022 

Thus, termination conditions are satisfied for 
(1)

1 ( )II IIP   and 
(1)

2 ( )II IIP   and so, 1 2( , )II II IIx x x=  

are the efficient solutions of lower level. Now, it is left to verify if it is acceptable to ULDM and 

the conditions are given as: 

(i) 
1 1

1

1

( ) ( ) 0.5879 0.65811

0.90462( )

I I I II

I

I II

H x H x
T

H x

− −
=  , 

(ii) 
2 2

2

2

( ) ( ) 0.844627 1.109085

1.109085( )

I I I II

I

I II

H x H x
T

H x

− −
=  . 

 

So, 1 2( , )II II IIx x x= ; 10.0000312 0.0000672Ix  , 20.0000452 0.0000521IIx   are the 

efficient solutions to be further referred by the DM at the third level. 

 

Third Level: The Model ‘M2’ of third level is finally equivalent with: 

2

1 2

3

2 22 2
1 31 3 2

2 2 2 2

1 3 1 2

0.965 1.0525 1.11250.9375 1 1.1275
( ) ( ) , ( )

0.965 3 1.0525 0.9925 3.0325 1.0725

III III II

x

x x xx x x
Min H x H x H x

x x x x

 + −+ − 
= = = 

+ + + +  

 

 

subject to 
2 2 2

1 2 3

2

1 2 3

2

2 1 3

1

2

1 2 3

1.1375 1.1125 0.9075 10.95,

1.165 1.0725 0.9125 4.0875,

0.865 0.965 1.0525 9.0475,

0.0000312 0.0000672,

0.0000452 0.0000521,

, , 0.

x x x

x x x

x x x

x

x

x x x

+ + 

+ + 

+ + 

 

 



 

 

We now solve this reconstructed third level of our model with additional constraints by the same 

method as followed in first and second levels and a set of efficient solutions is obtained given as in 

Table 6. 

 
Table 6. Efficient solutions for the third level. 

 

2

III  1
x  

2
x  

3
x  

1

IIIP  2

IIIP  1 ( )IIIH x  2 ( )IIIH x  

-0.3 0.0000472 0.0000521 2.01 0.12 -0.3 0.302 -2.08 

-0.24 0.0000472 0.0000521 1.95 0.09 -0.24 0.301 -2.03 

-0.18 0.0000473 0.0000521 1.89 0.07 -0.18 0.299 -1.97 

-0.12 0.0000473 0.0000521 1.85 0.04 -0.12 0.298 -1.91 

-0.06 0.0000474 0.0000521 1.79 0.02 -0.06 0.295 -1.86 

0.06 0.0000476 0.0000521 1.68 -0.02 0.06 0.291 -1.75 

0.12 0.0000476 0.0000521 1.63 -0.04 0.12 0.288 -1.69 

0.18 0.0000471 0.0000521 1.58 -0.06 0.18 0.286 -1.63 

0.24 0.0000477 0.0000521 1.52 -0.08 0.24 0.283 -1.58 

0.3 0.0000480 0.0000521 1.47 -0.1 0.3 0.280 -1.52 
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Thus, termination conditions are satisfied for 
(1)

1 ( )III IIIP   and 
(1)

2 ( )III IIIP   and so, 

1 2( , )III III IIIx x x=  are the efficient solutions of third level. Now, it is left to verify if it is acceptable 

to FLDM and SLDM and the conditions are given as: 

(i) 
1 1

1

1

( ) ( ) 0.5879 0.66004

0.66004( )

I I I III

I

I III

H x H x
T

H x

− − +
=  , 

(ii) 
2 2

2

2

( ) ( ) 0.844627 1.115617

1.115617( )

I I I III

I

I III

H x H x
T

H x

− −
=  , 

(iii) 
1 1

1

1

( ) ( ) 0.27409 0.27431

0.27431( )

II II II III

II

II III

H x H x
T

H x

− −
=  , 

(iv) 
2 2

2

2

( ) ( ) 1.75065 1.7558

1.7558( )

II II II III

II

II III

H x H x
T

H x

− − +
= 

−
. 

Thus, finally it is a choice of the DM to choose any solution from Table 6 as the efficient solution 

for the model. The efficient solutions form a pareto front as shown in Figure1. 

 

Comparison of Above Numerical with Fuzzy Goal Programming (FGP): We solved the above 

numerical illustration with FGP and it was found that the values of objectives are given by: 
1
( )IH x

= −0.00872 and 
2
( )IH x = −0.0086; 1 ( )IIH x = −0.149 and 

2
( )IIH x = −0.0149; 1 ( )IIIH x  = −0.024 

and 2 ( )IIIH x = −0.0155. We can easily see from Table 4, 5 and 6 that in both the approaches, one 

of the objectives at each level is better optimized. It is better represented by the Figure 2, Figure 3 

and Figure 4. Hence, it is concluded that both the approaches are comparable to each other and this 

verifies our proposed methodology. 

 

 
 

Figure 1. Pareto front formed by efficient solutions. 
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Figure 2. Comparison of objectives of first level with FGP. 

 

 

 
 

Figure 3. Comparison of objectives of second level with FGP. 

 

 

 
 

Figure 4. Comparison of objectives of third level with FGP. 
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9. Application Related to Production Problem 
Consider that a car manufacturing unit(MU) is producing three cars 𝑨, 𝑩 and 𝑪 with two models-

base model 𝑨𝟏, 𝑩𝟏, 𝑪𝟏 and top model 𝑨𝟐, 𝑩𝟐, 𝑪𝟐 for each car. Suppose, the manufacturing unit 

decides the selling prices of these cars as Rs. 𝑺𝑨
𝟏 , 𝑺𝑩

𝟏 , 𝑺𝑪
𝟏 for base models and Rs. 𝑺𝑨

𝟐 , 𝑺𝑩
𝟐 , 𝑺𝑪

𝟐 for top 

models. The unit sets the target of producing at the most 𝑻 cars altogether. The manufacturing costs 

of one model of 𝑨𝟏, 𝑩𝟏, 𝑪𝟏 are Rs. 𝒍𝟏,𝒎𝟏, 𝒏𝟏 and costs an extra cost of Rs.𝒔 per each base model 

car of all types for time bound completion of target due to extra input charges. Similarly, the 

manufacturing costs of one model of 𝑨𝟐, 𝑩𝟐, 𝑪𝟐 are Rs. 𝒍𝟐,𝒎𝟐, 𝒏𝟐 and costs an extra cost of Rs.𝒕 
per each top model car. Suppose, 𝒙𝟏, 𝒚𝟏, 𝒛𝟏 units of base model cars and 𝒙𝟐, 𝒚𝟐, 𝒛𝟐 units of top 

model cars are manufactured by the unit. 

 

The prices at which base models are sold are Rs. 𝑆𝐴
1𝑥1, 𝑆𝐵

1𝑦1, 𝑆𝐶
1𝑧1 and for top models are Rs. 

𝑆𝐴
2𝑥2, 𝑆𝐵

2𝑦2, 𝑆𝐶
2𝑧2. The costs at which each base model car is manufactured are Rs. 𝑙1 + 𝑠𝑥1,𝑚1 +

𝑠𝑦1, 𝑛1 + 𝑠𝑧1 and for each top model car are Rs. 𝑙2 + 𝑠𝑥2,𝑚2 + 𝑠𝑦2, 𝑛2 + 𝑠𝑧2. Thus, total cost of 

base model cars are Rs. (𝑙1 + 𝑠𝑥1)𝑥1, (𝑚1 + 𝑠𝑦1)𝑦1, (𝑛1 + 𝑠𝑧1)𝑧1 and total cost of top model cars 

are Rs. (𝑙2 + 𝑠𝑥2)𝑥2, (𝑚2 + 𝑠𝑦2)𝑦2, (𝑛2 + 𝑠𝑧2)𝑧2. The objective of every manufacturing unit is to 

maximise its profit per unit cost of production. Thus, this production problem is finally modelled 

in the form of QFPP which is presented as: 

 𝑀𝑎𝑥  𝐻(𝑥) = {
𝐻1(𝑥) =  

𝑆𝐴
1𝑥1+𝑆𝐵

1𝑦1+𝑆𝐶
1𝑧1−[(𝑙1+𝑠𝑥1)𝑥1+(𝑚1+𝑠𝑦1)𝑦1+(𝑛1+𝑠𝑧1)𝑧1]

(𝑙1+𝑠𝑥1)𝑥1+(𝑚1+𝑠𝑦1)𝑦1+(𝑛1+𝑠𝑧1)𝑧1

𝐻2(𝑥) =  
𝑆𝐴
2𝑥2+𝑆𝐵

2𝑦2+𝑆𝐶
2𝑧2−[(𝑙2+𝑠𝑥2)𝑥2+(𝑚2+𝑠𝑦2)𝑦2+(𝑛2+𝑠𝑧2)𝑧2]

(𝑙2+𝑠𝑥2)𝑥2+(𝑚2+𝑠𝑦2)𝑦2+(𝑛2+𝑠𝑧2)𝑧2

} 

subject to, 

𝑦1 + 𝑥1 + 𝑧1 + 𝑥2 + 𝑦2 + 𝑧2 + 𝑥3 + 𝑦3 + 𝑧3 ≤ 𝑇, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑧1, 𝑧2, 𝑧3 ≥ 0. 
 

10. Conclusions 
An MLMOQFP model using TrFN as coefficients in objectives and constraints is solved in this 

work to obtain an effective solution. The Rouben Ranking Function is used to cope with TrFN 

coefficients and build a crisp model. Then, a highly efficient iterative parametric technique for 

transforming a fractional model to a non-fractional model is provided. Furthermore, this method is 

paired with the  -constraint method to tackle a large number of objectives while maintaining a 

single objective model that is easy to solve. This method alters the viable region, resulting in a 

more representative set of efficient solutions. Because it swiftly converges on the best optimal 

solution, the suggested method is very efficient in terms of finding a solution. In addition, a 

numerical is solved at the end to illustrate the technique's practicality. The proposed method can be 

used in a variety of disciplines, including industrial optimization, economics, traffic, finance, and 

waste management. The approach can also be used to solve bi-level and multi-level programming 

issues, as well as MOQFP issues that involve coefficients as triangular, pentagonal, intuitionistic 

fuzzy numbers and intervals. 
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